banner USF Home College of Arts & Sciences OASIS myUSF USF A-Z Index

USF Home > College of Arts and Sciences > Department of Mathematics & Statistics

Mathematics & Statistics

Colloquia — Summer 2009

Wednesday, May 20, 2009



Quandle homology and its geometric applications in knot theory
Maciej Niebrzydowski
University of Louisiana at Lafayette
PHY 108
Mohamed Elhamdadi


A quandle is an algebraic structure whose axioms model the Reidemeister moves in classical knot theory. Quandles are of interest to topologists since the knot quandle is a classifying invariant of knots up to orientation-reversing homeomorphisms of topological pairs. Finite quandles are of particular interest as a source of computable invariants that nicely reflect various geometric properties of knots and links.

The talk will be focused on the homology theory of quandles. We will describe our attempts to understand the structure and patterns appearing in these homology groups. We will also discuss some of its geometric applications.