USF Home > College of Arts and Sciences > Department of Mathematics & Statistics

Mathematics & Statistics

# MGF 1106 — Finite Mathematics — Syllabus

Prerequisites: C (2.0) or better in MAT 1033, or SAT Math score of 480 or better, or ACT Math score of 19 or better, orElementary Algebra CPT score of 72 or better.

Course Format: The course follows the Math Emporium model: Students meet twice a week for 50-minute lectures and must spend 2 hours per week in the SMART Lab. The course is intended for students who do not need to take calculus as part of their major degree program. The course fulfills 3 semester hours of the Gordon Rule Computation requirement, provided a grade of C-minus or better is achieved. There are four tests plus a final exam. The final exam is cumulative and all multiple choice.

Foundations of Knowledge & Learning: This course is part of the University of South Florida’s Foundations of Knowledge and Learning (FKL) Core Curriculum. It is certified for Mathematics and Quantitative Reasoning and will meet the following four dimensions: Critical Thinking, Inquiry-based Learning, Scientific Processes, and Quantitative Literacy. Students enrolled in this course will be expected to participate in the USF General Education assessment effort. This might involve answering questions that measure quantitative reasoning skills (but are not directly related to the course), responding to surveys, or participating in other measurements designed to assess the FKL Core Curriculum learning outcomes.

Text: Thinking Mathematically, 7th Edition, by Blitzer

Course Content

2. Set Theory (3 weeks)
2.1 Basic Set Concepts
2.2 Subsets
2.3 Venn Diagrams and Set Operations
2.4 Set Operations and Venn Diagrams with Three Sets
2.5 Survey Problems

3. Logic (3 weeks)
3.1 Statements, Negations, and Quantified Statements
3.2 Compound Statements and Connectives
3.3 Truth Tables for Negation, Conjunction, and Disjunction
3.4 Truth Tables for the Conditional and the Biconditional
3.5 Equivalent Statements and Variations of Conditional Statements
3.6 Negations of Conditional Statements and De Morgan’s Laws
3.7 Arguments and Truth Tables (omit)
3.8 Arguments and Euler Diagrams (omit)

11. Counting Methods and Probability Theory (4 weeks)
11.1 The Fundamental Counting Principle
11.2 Permutations
11.3 Combinations
11.4 Fundamentals of Probability
11.5 Probability with the Fundamental Counting Principle, Permutations, and Combinations
11.6 Events Involving Not and Or; Odds
11.7 Events Involving And; Conditional Probability
11.8 Expected Value (omit)

12. Statistics (3 weeks)
12.1 Sampling, Frequency Distributions, and Graphs
12.2 Measures of Central Tendency
12.3 Measures of Dispersion
12.4 The Normal Distribution
12.5 Problem Solving with the Normal Distribution (if time permits)
12.6 Scatter Plots, Correlation, and Regression Lines (omit)